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Abstract— Network tomography infers internal network char-  not only with multicast and unicast but also with network
acteristics by sending and collecting probe packets from t coding capabilities [7]-[9]. Our approach can be summarize
network edge. Traditional tomographic techniques for geneal o5 follows. Given a selected set of sources, an orientation

topologies typically use a mesh of multicast trees and/or ucast . .
paths to cover the entire graph, which is suboptimal from the algorithm determines the paths to be followed by probes, so

point of view of bandwidth efficiency and estimation accurag. as to avoid cycles, and the nodes that will serve as receivers
In this paper, we investigate an active probing method for lnk Then, sources send appropriately chosen probe packets; in-
loss inference in a general topology, where multiple sourseand  termediate nodes linearly combine incoming probes (over an
receivers are used and intermediate nodes are equipped with appropriately chosen finite field) and multicast the outjut t

network coding, in addition to unicast and multicast, capalilities. Il outaoing links: finall . th b d th
With our approach, each link is traversed by exactly one packt, all outgoing links; finally, receivers use the number an e

which is in general a linear combination of the original probes. content of received probes to infer the loss rates of alkirate
The receivers infer the loss rate on all links by observing no links. The following example illustrates this operation.
only the number but also the contents of the received probesn
this paper: (i) we propose an orientation algorithm that creates
an acyclic graph with the maximum number of identifiable edgs
(ii) we define probe combining coding schemes and discuss sem
of their properties and (iii) we present simulation results over
realistic topologies using Belief-Propagation (BP) algathms.

. INTRODUCTION

Network monitoring is a necessary component of the di-
agnosis and operation of any network. Monitoring link loss

rates, in particular, is a useful input to various controt an P1 1-2-4-5-9 P4 1-3-5-9

traffic engineering decisions at the network and applicatio P2 1-2-4-7-89 =:-=r- =" P5 1-6-7-8-9

layers. Over the past decade a significant research effert ha L e P6 1-6-10-8-9
- — P7 1-6-10-9

been devoted on a class of monitoring problems, known as
loss tomography, which aim at inferring link loss rates gsingg 1. Example of a general topology (based on Abilene). dfar source
activeend-to-endneasurements, i.e., probes sent and collectgdde 1), we show the orientation of edges, the resultingiver (node 9)
from/at the network edge [1]-[4]. One of the attractive afnd the possible paths from the source to the receiver.
tributes of tomography is that it does not need the cooritinat
of internal nodes, which may be difficult or impossible ingar ~ Example 1:Consider the configuration shown in Fig. 1: it
networks with distributed control. is based on the Abilene backbone topology [11] and consists
Although there is a very good understanding of this probleof 10 nodes andl5 edgesFE,..E5; our purpose is to infer
for tree topologies [1], link loss tomography over generahe loss rates on each edge. If nddis used as a source, the
graphs with an arbitrary structure is a challenging problerarientation algorithm of Section Il selects nofles receiver
The existing approaches for general graphs use multiple mahd 7 paths P, ...P; from nodel to node9 so as to avoid
ticast trees and/or multiple unicast paths to cover the omtw cycles. Once the orientation is determined, several prabes
graph, and then combine the link loss rates estimated frem #ent from the source and collected at the receiver.
different paths/trees [2]-[4]. These approaches are gubap  In each experiment, the source sends prahes; andzs
with respect to the following optimality criteria: (i) howany to the outgoing edges, 2 and 3 respectively. Nodeg, 4, 6,
links of the network we can infer (identifiability), (ii) howell 10 simply forward their incoming packets to all their outgoing
we can infer them (estimation accuracy) and (iii) how manjnks. Node3 performs coding operations as follows: if within
probes we need to send (bandwidth efficiency). a predetermined time-window it receives only probg it
In this paper, we explore a different approach, originallgimply forwards this packet; similarly if it receives onlygbe
proposed in [5], [6], which uses multiple sources and res. If, however, it receives both, andzs, it linearly combines
ceivers and assumes that intermediate nodes are equipiean to create packet; + z3 and sends it through outgoing



edge Es. Nodes5, 7 and 8 follow a similar strategy: if all the network. Employing this mode of operation over a network
links are functioning, nodé sends packedz; + x3, node7 with cycles may result in probes getting trapped inside degyc
sends packet; +x2, and node8 sends packeix; +x-. In the in a positive feedback loop that consumes network resources
network coding terminology, nod&s7 use coding coefficients without aiding the estimation process. The following exéanp
[1,1] and nodes$, 8 use coding coefficientd, 2]; clearly, the illustrates such a situation.
choice of coefficients plays an important role. Example 2:Consider again the network shown in Fig. 1,

From the content of the received probes, nGdean infer but now assume that the orientation of edgés and Es
the state of the paths and eventually the state of the linkgere reversed. Thus edgés, E5, E;, and Es create a cycle
E.g. if it receives onlyzs, it infers that all paths from the between nodeg, 4, 5, and3. The probe packets injected by
source S have failed except for patl®,; therefore, edges nodes3 and2 would not exit this loop. 0
Fs, Es, Ey worked and all other edges failed. Similarly, the To address this problem, one could equip intermediate nodes
receiver can infer the state of the links from any combimatiayith additional functionalities, such as removal of pasket
of received probes, assuming that the paths and coding schehat have already visited the same node. This is not practica
are properly selected. This is the goal of this paper. [1 because it requires keeping state at intermediate nodésefu

This paper builds on our prior work in [5] (where wemore, such operations would need to be repeated for every set
introduced the idea of using network coding to improvef probes, leading to increased processing and complexity.
network monitoring) and in [6] (where we studied link loss |n this paper, we take a different approach. We assume that
estimation in tree topologies) and extends it to general®p we have the freedom to select -a small number of- nodes that
gies. Our approach uses exactly one probe per link and avoigs act as sources or receivers of probe packets. We then
suboptimal combination of observations from differenefie propose an algorithm that, starting from a small set of s®urc
which can have been weaknesses of traditional tomographyigdes, selects a graph orientation and a set of receivehs suc
general graphs [2].However, our approach also faces novehat the resulting graph does not contain any directed sycle
challenges in dealing with cycles and link identifiability.  Simulations showed that the resulting number of receivers

The paper is structured as follows. Section Il states thi@&m the proposed algorithm tends to be quite small. We
problem and discuss the challenges in dealing with cyclés aiscuss this approach in Section II1.
identifiability in general graphs. Sections Il and IV presa  Gjven the identified graph orientation, we can estimate the
first attempt to address them. Section VI presents simmlatiRyss rate of all links in one direction. We can then reverse
results over realistic topologies and using a messageAgasshe orientation of all links, and the role of the sources and
estimation algorithm. Section VIl concludes the paper.  receivers, to create again an acyclic orientation thatallto

Il. PROBLEM STATEMENT AND CHALLENGES estimate the loss rates of the links in the opposite diractio

Consider an undiregted grapi = (V,E) WhereV_is B. Challenge II: Identifiability
the set of nodes andl is the set of edges corresponding to
logical links? connecting the nodes. Each linke E has a  Consider a grapli: = (V, E), a setS C V' of sources and
loss probability (or ratey. associated with each direction@ S€tR C V' of receivers of probes. Assume that intermediate
which we are interested in estimating. We want to estimaf@des in the network are only allowed to perform linear
the link loss rate associated with both directions of alksin operations over a finite alphabet.
We are allowed to use some nodes as sources and receiverBefinition 1: A link is said to beidentifiableunder a given
we assume that intermediate nodes are equipped with unica¥enitoring scheme (choice of sources, receivers, interaied
multicast and network coding capabilities; we want to iffer node operations) if its associated loss rate can be reliably
loss rate on every edge based on observations on the rezeiveferred from the measurements observed at the receivers.

Link loss inference in general graphs faces several novsltree networks, we have derived identifiability criteriada
challenges. Here, we discuss two of them. proved that it is sufficient for intermediate nodes to simply
. erformxor operations [5]. However, in general graphs, even
A. Challenge I: Graphs with Cycles iﬁ:there are nopcyclesgor[ gperations are ?10 Iongegr sEfficient.

In our approach, intermediate nodes simply combine theirExample 3:Consider the network and edge orientation
incoming packets and forward them towards all their outgoirshown in Fig. 1, but now assume that intermediate nodes are
links, in a distributed manner, and without a global view qf)my allowed to doxor operations. Notice that path3, and

1Comparison to traditional tomography is out of the scopehis short l.Dl oyerlap twice: on EdgEQ’ and later Or? edgéfg. It all
paper. Here, we assume that the network under study is esliipgh unicast, INKS in both paths function, theor operations cancel each
multicast and network coding capabilities, and we look fue best way to other out, resulting in the same observation with the caak th

exploit these capabilities for link loss tomography. Clgaretwork coding i i ;
does not come for free and is not implemented in the routetaytoneither both paths are dlsrUpted' More speC|f|caIIy, the fOllOWIW@t

is multicast. However, network coding is gaining momentunwireless and €VENts become indistinguishable:

ovzerlay_ netvyorks and we expect !t _to be part of the_se n_et_wmrkhe futu_re. (I) all edges functionnnode 5 receives packelrg through
Logical links result from combining several physical linkscascade into daek d k h h edaes. d d

a single link, and thus lead to a graphwhere no vertices have degree two. edgeLy and packetr; +x3 through e _g 6, anad sends

It is well-known that only logical links are identifiable. packetxs through edgéeyy to the receiver



Algorithm 1 Orientation Algorithm: Given graphG = sources contain links to other sources. In this case, onleeof t
(V,E) and sendersS C V, find receiversk C V and sources will also need to act as a receiver, i.e., we allow the
orientationV e € E, s.t. there are no cycles and all edgeset S of sources and the set of receiveisto overlap. In the
are identifiable. main part of the algorithm nodes are divided in three sets:

1 for all edgese = (s,v2) € 5 do . SetV; contains nodes that have been already visited and
Set outgoing orientation — vy have orientation already assigned to all their attached
+ end for _ _ _ edges. InitiallyV; = S.

R = {s € S that have incoming oriented edggs « Setl4, contains nodes that are one edge away figm
Vi=5; These are the next candidates to be addew; to
Vo ={v2 €V = Vi: st 3edge (vi,v2) fromuy € V1} « The remaining nodes are either receiveRs, or nodes
: Wh'(lje V2 7 @d do lud .  find ith that have not been visited y&t =V — V; — Vo — R.
Lnest;fédzr;sl%ef ;S{;ife‘zef"/;n_ {i}VQ without _In each step of the algorithm, one node_e V4 is selected, all _
.  Find nodesl; c V, that have the smallest num_|ts edg_es that do not have an orlent_atlon are set _to oquomg,
ber of edges with unset orientation andv* is added to — W, U{v*}. Notice that the orientation
) L . of edges going fronV; to V; is already set. However, a node
10: Find nodeslU; C U; that have the minimum distance " L
from the sourcess. Choose one of themr* € Us. v € V5 may have qddmonal unset edges; if it does not have
1 LetE* = {(v,w) € EstweV -V} unset _edges, then it be_co_mes_ a _reqeReF RU{U}.
1 for all edges(z’;* w) € E* do _ We include two heu_rlstlc criteria in the choice of € V5:
13: set direction t’OU* Cw (|) we look at nodes with the smallest number of unset edges;
14 end for (||) if there are sevgral such nodes, then we _select the node
15 UpdateVi — Vi U{v*} W|_th the shortest d|stancg from the sourcgsif there are
16:  UpdateVs « {vs € V—Vi : Fedge (vr,v2), v1 € Vi} still _sever_al _node_s,_we p|ck_ one at_ random. The ratl_onale
17- end while e behind _cr|ter|0n (Q is tq ay0|d (_:_re_atlng too many receivers
The rationale behind criterion (ii) is to create a set of path
with roughly the same path lengthiThe algorithm continues
until all nodes are assigned to eith&ror 1.
) N L Lemma 3.1:Algorithm 1 produces an acyclic orientation.
o or_wly receives packet; from its incoming Imks: and Proof: In each step, a node is selected and all its edges
again sends packet; through edgef, to the receiver which do not already have a direction are set as outgoing. Thi
On the other hand, if we do as in Example 1, i.e. allowequence of selected nodes is a topological ordering. At any
coding operations over a larger alphabet and carefullycselgoint of the algorithm, there are directed paths from nodes
coding coefficientsl, 1] at nodes3, 7 and[1,2] at nodes5,8, considered earlier to nodes considered later. A cycle would
then the above two events result in observing the distingfist if and only if for some nodes; andv;: v, is selected at
packets3z, + x5 and x3 at the receiver. This is a feasiblestepsj > i and the direction on the undirected edge, v;)

N RAM®DN

(i) edgesE, and FE; fail and all other edges functiomode

solution but not necessarily unique. U s set tow; — v;. This is impossible: if there were an edge
We discuss identifiability and coding scheme selection (%i,vj) it would have been set at the earlier ste@t the
phabet size and coding coefficients) in Section IV. opposite directiorv; — v;; therefore, the resulting directed
. REMOVING CYCLES graph has no cycle. However, there may be nodes without any

, i outgoing edges, which become the receivers. ]

Assume that we are given an qndl_rected grepk (V, E), The key point that enables us to create an acyclic oriemtatio
where the degree of each node is either one or at least thige: 5 \ndirected graph is that the receivers are one of the
this is indeed the case when we consider only logical linkgymts of the algorithm. Notice that a similar algorithmnca
Our goalis, starting from a set of nodes that act as selers g formylated for the symmetric problem, when the receivers
V', to select an orientation of the graph and a set of receivefsqre given and the orientation algorithm produces a (reyerse
so that (i) the resulting graph is acyclic, (i) the orieftat ,entation and a set of sourcs so that there are no cycles.
allows the maximum number of links to be identifiable, anpiowever, if bothS and R are fixed, there is no orientation
also (iii) attempts to minimize the number of receivers.  gigorithm that guarantees the lack of cycles for all graphs,

We propose Algorithm 1, which achieves these goals Ryithqut introducing additional sources or receivers.
sequentially visiting the_vertlces _of the_ graph, startimgnf Regarding identifiability, it is easy to see through explici
the sources, and selecting an orientation for all edgesef t,ngirycred examples that in a general undirected graph con
visited vertex. This orientation can be thought as imposingg;sting of logical links, and a fixed given choice of sources,
partial order on the vertices of the graph: no vertex is @it
before all its parent vertices in the final directed graph. 30ne could use different criteria to rank the candidate so as to enforce

We now describe Algorithm 1. Linet — 3 attempt to set additional desirable properties on top of identifiabildy/e used shortest path
from the sources to impose a breath-first progression of ldperithm and

all I_|nks attaChe_d to the sources as outgom_g. If we allow %ths with roughly the same length. We could also optimizettfe alphabet
arbitrary selection of sources we may fall into cases whesie and/or the complexity and performance of the estimatigorithms.



there might not always exist a choice of receivers and ori-
entations such that all links are identifiable. To maximize
the number of identifiable edges, Algorithm 1 selects an
orientation such that each vertex that is not a source or a
receiver, has at least one incoming and at least one outgoing
edge. The proof that such an orientation achieves the cthime
goal is omitted here for lack of space. We further discusseiss Fi9: 2. Factor graph corresponding to the graph of Fig.1 asetidor the
. r L eree s . belief propagation estimation algorithm.
related to identifiability in the next section.

IV. IDENTIFIABILITY AND CODING The alphabet size affects the bandwidth efficiency, and is

For a given edge: of a graph, whether it is identifiable desired to be kept as small as possible. The upper bound
or not, depends on two factors, the first being the topoldgicdepends on the topology as well as on the choice of coding
structure and orientation of the network links, and the sdcocoefficients and is part of ongoing wotkn practice, we have
being the coding scheme (probe packet combining) employedticed through simulation that a random choice of the agdin
Given the set of sources, receivers and link orientation, weefficients over a field with size larger than the maximum
can identify the set of path§P} that connect the sources tonumber of paths sharing an edge leads with high probability
all receivers. LetP(e) denote the set of paths that are routeth the maximum number of identifiable links.
from a source to a receiver, and employ edg&he receivers
can infer which of these paths were operating during a given V. LOSSESTIMATION ALGORITHM

experiment and which did not, by observing the received For our approach to be useful in practice, we need to
probes. This is the information that they can use to inféet linemploy a low complexity algorithm that allows to quickly
loss rates, together with the knowledge of the topology ar@timate the loss rate on every link from all the observation
the way these paths overlap. It is obvious that two edges at the receiver. Maximum Likelihood Estimator (MLE) is
ande; are not identifiable ifP(e1) = P(e2). We conjecture optimal but an efficient implementation is currently known
that the inverse is also true. Notice that this is a condiGon only for multicast trees [1]. Because MLE is quite involved
the structural properties of the graph itself. for general graphs, especially, large ones, we use a sutalpti
We additionally require intermediate nodes to employ & suligorithm instead; in particular, we use a Belief Propagati
able probe packet combining scheme. We call such schen®p) approach, building on the work in [10]. We briefly
probe codingschemes, and we say that a probe coding scheg@nmarize this approach in this section and we evaluate its
is valid, if it leads to the maximum possible number Oberformance through simulations in Section VI.
identifiable links, which is determined by the structure of Following the approach in [10], the first step is to create
the graph. Unlike tree configurations, the probe coding ovgfe factor graph from the original graph. Fig. 2 shows the
a general topology may need to perform operations usingator graph for the example network shown in Fig. 1. This
larger alphabet, as we discussed in Example 3. In this papgra bipartite graph: on one side there are the links (vagiabl
we restrict our attention to linear operations over finitédd8e nodes), whose loss rates we want to estimate; on the otter sid
i.e., additions and multiplications. We will say that a awgli there are the paths (function nodes) that are observed oy eac
scheme over a finite fielf, employs analphabet of size;.  received probe. An edge exists in the factor graph between a
Assume that receiver nodes only have incoming edges, aitk and a path if the link belongs to this path in the original
let e be an edge adjacent to a receiver Then P(er) is  graph. Note that, unlike tree topologies considered in,[i0]
the set of paths that connect sources to recefve@nd have general topologies there might exist multiple paths fomgve
er as their last edge. We say that a probe coding schemesifurce-receiver pair.
valid if, by observing the received probes from edgeat a  The second step is belief propagation. Each received probe
given experimentR can determine which of th&(er) paths  triggers message passing in the factor graph and results in a
were functioning during this experiment and which were nogstimate of link loss probabilities. The estimates fronfiedént
For valid coding schemes we can derive the following loogtobes are then combined, using standard methods [10], to
lower bound on the required alphabet size. provide an estimatea() for the actual loss probabilitya(,)
Lemma 4.1:Let G = (V, E) be acyclic and let’,, denote of every linke € E.
the maximum number of paths sharing an incoming edge ofThjs is essentially a parameter estimation problem, and the
any receiverr, i.e., P,, = max., P(er). Then the alphabet quality of the estimation for a single link is captured by
sizeq is greater than or equal 8,,. the mean-square errat/SE, = 73 (|dc — acl?), over
Proof: Assume that one of th®,, paths is functioning f realizations. To summarize the quality of the estimation
while all the others are not. Since two paths cannot overlap
in all edges, there exists a set of edge failures such that thi*Using the Sparse Zero Lemma we can show that there existsdanfit
event occurs. For the receiver to determine which of Ehe sizeq > L,_n Wh_ich guarantees identifiability, wherg,,, _is the ma_x_imum
paths is functioning it needs to differentiate between aste number of links in the set of pathB(er) for every receiverR. Intuitively

> this means that we need to distinguish amdng such possible events. We
P, distinct values. B are currently working on tighter bounds and randomized rgpdichemes.
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across all linkse € E, we use an entropy measufeNT (b) All possible placements of two sources
that captures the residual uncertainty across all lilRRET =

ZeeE log MSE, [6] These are the metrics we report in ou Fig. 4. Running the Orientation Algorithm on the Exodus topg.

T . . . Topolo Srcs-Recvs Codin Links / | Paths /| Edge Disj.
simulations in the next section. pology poimsg Path Link Pa?hs )
Abilene 1}-{9 4 3.85 1.8 3
VI. SIMULATION RESULTS 51-{6 1 3.71 173 3
. 91-{2 a 478 2.0 2
A. Network Topologies 10117 5 355 173 7
. . 3,61-{9 5 4 2.13 4
We_used two realistic topolo_g|es_, namely_ the _backb_on S SE1a z 375 7T
of Abilene and Exodus shown in Fig. 3. Abilene is a high- 159177 5 32 213 5
speed research network operating in the US and informatiop 1,4.10-{9} 6 3 233 | 6
. . . . Exodus 39,45,-{30,40; | 25 9.47 56.47 | 4
about its backbone is available at [11]. Exodus is a large TABLE T
commercial ISP, whose backbone map was inferred by th@roperTiES OF THE ORIENTATION GRAPHS PRODUCED BALG.1FOR
Rocketfuel project [12]. Both topologies were pre-proeelss DIFFERENT TOPOLOGIES AND CHOICES OF SOURCES

to create logical topologies that have degree at least 3. For

Exodus, nodes with degré@ewere merged to create a logicalpaths/receiver. The following observations can be madst,Fi
link between the neighbors while nodes with degree 1 wetige number of receivers produced by our orientation algorit
filtered; the resulting logical topology contaid8 nodes and is indeed very small, as desired. Second the number of
105 links. For the Abilene topology, due to its small size, iinks per path is almost constant, because by construction
addition to some links in tandem merged, more links wetle orientation algorithm tries to balance the paths lemgth
added; the modified topology comprises1déf nodes andl5 Third, the paths/receiver and paths/link metrics, whidecf
links, and is the one shown in Fig.and used as an examplethe alphabet size and the quality of the estimation, can be
throughout this paper. high; however, they decrease by orders of magnitude for
configurations with a few receivers; these should be chosen
in practice. Finally, Table | considers different choicels o

In Fig. 4, we consider the Exodus topology and we ruggrces in the two topologies and shows some properties of
the orientation algorithm for all possible placements o€ ony,e produced orientation.

and two sources; we call each placement an “instance”. We
are interested in the following properties of the oriemati C. Results on Belief-Propagation (BP) Inference

produced by Alg.1: This section presents results on the quality of the link loss
« the number of receivers: a small number allows for locaistimation for different assignments of loss rates to thksli
collection of probes and easier coordination. of the two considered topologies. The BP algorithm is used
« the number of distinct paths per receiver: this affects thgr estimation in all cases. For our simulations the linkskss
alphabet size and it is desired to be small. on different links are assumed independent, and may take
« the number of paths per link and links per path: these afrge values as they reflect losses on logical links, corimgris
fect the performance of the belief propagation algorithnaf cascades of physical links, as well as events related to
Fig. 4 shows the above four metrics, sorting the instancesngestion control within the network.
first in increasing number of receivers and then in increpsin In Fig. 5, we consider the modified Abilene topology with

B. Results on the Orientation Algorithm
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20 Entropy for loss rate same over all links
Srcs-Revs H a=0.05 | a=0.10 | a=0.15| a=0.2 | a=0.25 | a=0.30
0 1}-{9 -178.6 | -158.8 | -147.9 | -147.7 | -161.6 | -163.5
-60 5}-{6 -178.1 | -158.3 | -149.6 | -1545 | -160.4 | -156.5
9}-{2 -176.1 | -163.3 | -155.8 | -161.2 | -166.6 | -151.7
5 -8 1,9}-{7 -189.3 | -173.9 | -166.5 | -180.3 | -171.7 | -156.2
= 00 3,6}-{9 -186.2 | -176.2 | -171.3 | -177.8 | -166.7 | -151.4
9,6}-{4 -186.9 | -174.1 | -169.5 | -178.7 | -173.2 | -165.4
120 1,5,9-{7} -199.8 | -190.6 | -180.9 | -184.4 | -172.3 | -166.9
~140 1,4,10-{9} -186.4 | -183.9 | -178.3 | -182.3 | -177.3 | -173.2
DR — TABLE TT
"o s w00 s a0 200 3000 QUALITY OF ESTIMATION FOR THE (MODIFIED) ABILENE TOPOLOGY AND

#Probes

(b) Estimation for the entire graph: ENT

metric vs. number of probes
Fig. 5. Estimation of loss rates for the Abilene topology atifferent loss
rates ¢'s) across links: loss rates have been assumed inverseporianal
to the link bandwidth, as reported in [11]7% average loss rate on average).

FOR DIFFERENT CHOICES OF SOUR{B).

VIl. SUMMARY AND FUTURE WORK

In this paper, we studied the problem of link loss to-
mography in general graphs that are equipped with unicast,

multicast and network coding capabilities. We investidate

-140

-160

-180
0 500 1000 1500 2000 2500 3000

#Probes [1]

Fig. 6. Abilene topology with same on all links and one source (at 1).

(2]

loss rates inversely proportional to the bandwidth of thieac 3l
links. We see that the estimation error for each link (MSH) ary)
for all links (ENT) decreases quickly with increasing numbe
of probes. In Fig. 6 the same topology is considered but wi
the samex on all links. As expected, ENT decreases with the
number of probes, and convergence is faster for larger [6]
However, the estimation error is larger for largss, which is
due to the behavior of the belief propagation algorithm. (7]

Similarly, Fig. 7 shows the estimation error ENT for thc?g]
Exodus topology with uniformly assigned loss rates.

Finally, Table Il shows the results for a different numbe[?]

several aspects including: identifiability as a functiontloé
topology and of the code design, orientation algorithms to
avoid cycles, suboptimal estimation using belief-propiaga
Future work will (i) further investigate code design to irope
identifiability and estimation and (ii) compare our method t
traditional tree/path-packing approaches in generalltggap
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